Grand Challenge on Respiratory Sound Classification for SPRSound Dataset

IEEE BioCAS 2023 Grand challenge on Respiratory Sound Classification

IEEE BioCAS 2023 organized its second grand challenge on respiratory sound classification using the SPRSound dataset. Over 60 teams participated in these two grand challenges. The top 3 teams were selected based on the quality of their paper submissions and solutions and are invited to present their algorithms and classification results in the BioCAS 2023.

- Commencing Grand Challenge
- End of Project SubmissionRegular Paper Submission
- Final Paper Submission

1st March 19th May 9th June 11st August 1st September 19th-21st October

- Start of Project Submission
- Author Notification Date

• IEEE BioCAS

Main Organizers

Special Session Schedule of the Grand Challenge

Session Type: Grand Challenge Competition

• Date: Saturday, Oct 21, 2023

Time: 12:00 - 13:30Presenter: Top-3 teams

Venue: Westin Harbour Castle Hotel

Poster Session Schedule of the Grand Challenge

Session Type: PosterSession Code: C6P-C

Location: Poster Area 2

Date & Time: Saturday October 21, 2023 (16:00 - 18:00)

Top-3 Teams of the Grand Challenge

Team Bio ICDS: Nanyang Technological University

Team UoE_AIT: University of Essex

Team CoCross: Aristotle University of Thessaloniki

Paper Id	Title
5063	Grand Challenge on Respiratory Sound Classification for SPRSound Dataset
5232	A Deep Learning Architecture with Spatio-Temporal Focusing for Detecting Respiratory Anomalies
5330	Supervised Contrastive Pretrained ResNet with MixUp to Enhance Respiratory Sound Classification on Imbalanced and Limited Dataset
5389	Pediatric Respiratory Sound Classification Using a Dual Input Deep Learning Architecture