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Demand for Low Jitter Fractional-N PLLs

Latest wireless standards strive for very high throughput

◼ WiFi 7 enables 4k-QAM at 7GHz

◼ Cellular FR2 (MMW) transceivers to support 256-QAM at 40+ GHz

→ RMS jitter <100fs is required for LO

DSB IPN

Requirement (dBc)

Integrated RMS jitter (fs) (Int. 1kHz to 100MHz) 

29.5GHz 40GHz 43GHz 47GHz 7.125GHz

64-QAM -30 171 126 117 107 707

256-QAM -33 121 89 83 76 500

1K-QAM -44 NA NA NA NA 141

4K-QAM -47 NA NA NA NA 99.8
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State-of-the-Art Low Jitter Fractional-N PLLs
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◼ A few frac. N PLLs achieved 

<100fsrms jitter; FoM is still worse 

than integer-N PLLs

◼ Even harder for mmW PLLs due to 

mmW VCO

◼ Analog/digital PLLs using DTC-

assisted PD achieves lower jitter 

and better FoM



Major Noise Source in Any PLLs

◼ Major noise source in a PLL 

◼ VCO/DCO

◼ CLKREF

◼ Phase detector (PD) → try to minimize

◼ Feedback divider → negligible

KPD(s) HLF(s)

1/N

|Φref| |Φout|

Φdiv, n

Φref, n ΦPD, n ΦVCO, n

  

+
+

-

+

+

+
KVCO

s

÷N

CLKREF

PD LF VCO

MMDIV  ΔM QE

Frequency (Hz)

 PD (4%)

(39%)

 DIV (6%)
 VCO (51%)
 REF (39%)

SSB PN contributors at a low jitter 6-GHz PLL output

→ Dominate

5



Extra Challenges in Fractional-N PLLs

◼ DSM QN 

◼ Much wider dynamic range (DR) needed in PD

◼ Fractional spurs: 

◼ MMD, PD nonlinearity → result in noise 

folding, higher inband noise

◼ Coupling between VCO/DCO and PD/CLKREF 

÷N

PD LF VCO

DSM FCW

MMD

CKREF

CKFB in 

Int. N PLL

CKREF

CKFB

CKFB in 

Frac. N PLL

Φe

Φe

Mash1: Φe-TVCO/2 +TVCO/2

Φe-TVCO +TVCOMash1-1:

Φe-2TVCO +2TVCOMash1-1-1: 6

Integer-N 

or 

frac.-N with linear PD

QN leakage

Spurious tones

QN folding

f

PN

First-order DSM

Φe Tvco



Major PLL Topologies – PD is Key Difference

◼ Analog PLL using PFD-CP

◼ DPLL using TDC: small LF size, flexible 

calibration and configurability

◼ PLL using DTC-assisted PD

CKREF

CKFB

VCO

MMD
CKVCO

PFD

Analog Loop Filter

CP

CKREF

CKFB

DCO

MMD
CKVCO

TDC

Digital Loop Filter

CKREF

CKFB

VCO/DCO

MMD

DTC

DTC code
CKVCO

Sampling 

PD

Loop Filter

▪ Thermal/flicker noise, maybe QN

▪ Linearity over required DR

▪ Pdc

▪ Complexity, area 

Show more advantages, gain popularity

in both academia and industry

PD 

design 

metrics
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Advantages of DTC-assisted PD

TVCOΔt[n]

CKFB

CKREF

CKDTC

Δt[n] 0

÷N

PD LF VCO

DSM FCW

MMD

CKDTC

CKFB
ΦeDTC

CKREF

ΦQE[n]

KDTC = Tvco/ΔtDTC

DTC
Code

◼ DTC is a Digital-to-Time Converter

◼ DTC cancels accumulated QE on CKFB 

due to DSM 

→ Near zero phase error at PD after locking

Just like integer-N case!

→ Can use high gain PD of small dynamic 

range for lower inband noise, high 

linearity, lower Pdc … 

9



DTC-based PLL Variations – Digital PLLs

◼ Φe is 1- or n-bit digital word 

→ Used for LMS based KDTC calibration
◼ Digital sampling PLL

◼ DTC-based ADPLL (1st order DSM) ◼ DTC-based Bang-bang PLL

[D. Tasca JSSC Dec. 2011]
[N. Pavlovic ISSCC 2011]

[X. Gao ISSCC 2016]

◼ DLF small chip area

◼ BBPD simpler than TDC (sampler+ADC), 

but need aux circuits to linearize its 

gain, and achieve fast locking

◼ Need DCO

Pros:

Cons:
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CKREF

DCO

Counter CKDTC
DTC

CKVCO

DLF
Reference

Accumulator
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RDCO

RREF_i Φe

ckr RS

DTC code Generator

RREF_f

DTC code

+

-+

CKREF

CKFB

DCO

MMD

DSM

CKDTC

FCW
Φe(n)

KDTC

DTC

DTC code

CKVCO

DLF

TDC ADC
Φe

CKREF

CKFB

DCO

MMD

DSM

CKDTC

FCW
Φe(n)

KDTC

DTC

DTC code

CKVCO

DLFBBPD
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DTC-based PLL Variations – Analog PLLs

◼ Analog PLL using sampling PD (SPD)

◼ Analog PLL using sub-sampling PD

CKREF
GM

Vctrl
Vsmp

Vref
VCO

DSM

CKDTC

FCW (Frequency 

control word)
Φe(n)

+

-

KDTC

DTC

DTC code

CKVCO

SSPD

CKREF
GM

Vctrl

CKFB

Vsmp

Vref
VCO

MMD

DSM

CKDTC

FCW
Φe(n)

+

-

KDTC

DTC

DTC code

CKVCO

SPD

[K. Raczkowski JSSC May 2015]

[W. Wu JSSC May 2019]

◼ PD is a simple sample-hold circuit

◼ KPD is linear and well-defined vs. BBPD

◼ No high-resolution TDC, no DCO

◼ LF CI for optimal IPN ≤ 50pF typically 

(small overhead); type-I removes CI

◼ Need to digitize Φe for calibrations

Pros:

Cons:
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◼ DTC-assisted CP PLL

CKREF Vctrl VCO

FCW 

CP
DTC

CKFB
MMD

DSM
Φe(n)

KDTC

CKVCO

PFD
UP

DN

[P. Renukaswamy ISSCC 2023]



DTC vs. TDC as Phase Detector

◼ TDC-based digital PLL

◼ In-band noise limited by TDC QN 

∆t ~ 8ps in 14nm CMOS

◼ Finer τ → Complexity ↑
coarse-fine, Vernier delay line, timing 

amplifier, noise shaping, stochastic 

flash TDC, …

◼ DTC-based analog/digital PLL

◼ QN < other noise

∆t ~ 100fs in 14nm CMOS

◼ Broadly applicable

◼ Bang-bang

◼ Type-I/II (sub)sampling

◼ Digital (sub)sampling

D Q D Q D Q

CKREF

CKFB

Unit delay τ 

+

TDCout [n:0]

Q1 Q2 Qn

TDC
=

ADC

CKREF

CKFB

Q1 → 1

Q2 → 1

Q3 → 0

τ TDC

DTC
=

DAC

CKREF
CKDTC

C

Vdly

CKREF

CKDTC

τ DTC
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RC Delay Based DTC- Variable Slope DTC 

DTC contributes to PLL integrated PN (IPN)

◼ DTC RMS jitter → inband PN

◼ DTC quantization noise → inband PN

◼ DTC nonlinearity → frac. N spurs and noise folding

CKREF
R

D1 n bit

CLSB

Δtcmp

VDTCVdly

14

÷N

PD LF VCO

DSM FCW

MMD

CKDTC

CKFB
ΦeDTC

CKREF

ΦQE[n]

KDTC = Tvco/ΔtDTC

DTC
Code

Variable

slope
S1 S2

Vd

Ramp 

generation

Threshold

Comparison



DTC Noise: Quantization Noise

◼ DTC QN

Unit delay 𝑇𝑟𝑒𝑠 = ln 2 ∙ 𝑅 ∙ 𝐶𝐿𝑆𝐵

Input referred (at CKREF) ΦDTC, QN = 
(𝟐𝝅∙𝑇𝑟𝑒𝑠)

𝟐

𝟏𝟐
∙ 𝒇𝒓𝒆𝒇

e.g., 𝑇𝑟𝑒𝑠 = 400fs, 𝒇𝒓𝒆𝒇 = 104MHz, → ΦDTC, QN, in dBc/Hz = -163dBc/Hz

10bit → total delay range, DR = 400ps, can support 2nd-order DSM with fvco> 5GHz

CKREF
R

D1 n bit

CLSB

VDTCVdly

Vth
Vdly

VDTC
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DTC Noise: Thermal Noise

◼ DTC thermal noise: delay stage and INV buffer 

1) PN from delay stage: 

Depends on slew of Vdly, thus, DTC code

SSB PN sampled at half VDD transition considering noise folding is 

ℒ ≅ 10 ∙ 𝑙𝑜𝑔10
1

2

2𝜋∙𝑓𝑟𝑒𝑓

𝑘𝑠𝑙𝑒𝑤

2

∙ 𝑆𝑣
𝑓𝑜𝑙𝑑𝑒𝑑

(𝑓𝑚) , 𝑘𝑠𝑙𝑒𝑤 =
1

2𝑅𝐶
at 

𝑉𝐷𝐷

2
, 𝑆𝑣

𝑓𝑜𝑙𝑑𝑒𝑑
(𝑓𝑚) ≅

Τ𝐾𝑇 𝐶

Τ𝑓𝑜𝑢𝑡 2

→ ℒ ≅ 10 ∙ 𝑙𝑜𝑔10 2𝑘𝑇 ∙ 𝑓𝑟𝑒𝑓
2𝜋

ln 2

2
∙
2𝑛∙𝑇𝑟𝑒𝑠

2

𝐶𝐿𝑆𝐵
at mid code,

e.g., CLSB needs ≥ 2fF for PN floor < - 171dBc/Hz

2) PN from INV buffer dominates: 

INV BUF size up to hundreds of μm Width  

CKREF
R

D1

n bit

CLSB

CKDTC
Vdly

INV 

buffer

Delay stage

16[W. Wu JSSC 2019]



DTC Nonlinearity – Static Distortion

◼ Code/slope dependent Δtcmp→ INL, dominate!

- Fixed cap. (e.g., 1~2 pF) reduces INL < ~2 LSB

- Parasitic cap of INV BUF serves as fixed cap

◼ Matching of capacitor array → not dominate as CLSB ≥ 2fF

- Common centroid layout, DEM to achieve DNL= ±0.2 LSB for 10bit DTC 

CKREF
R

D1

n bit

CLSB

Δtcmp

VDTC

Vdly

Δtcmp varies with 

Vdly slope → INL

Vth
Vdly

VDTC

Δtcmp

Cfix
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DTC code

Δtcmp

0 512 1023256 768

DTC code

IN
L

 (
fs

)

0

500

1000

1500

Larger Cfix

DR



DTC code

100 300 500 700 900

-1

0.6

0.2

-0.2

-0.6

IN
L

 (
n

o
rm

a
li
z
e

d
 t

o
 L

S
B

)

Same code, 

different delay due 

to unsettled supply

DTC Nonlinearity – Dynamic Distortion

◼ Code-dependent supply settling error → INL, memory effect, dominate!

Large transient current at CKREF edges, supply dips and resettle each cycle

CKREF

for 
charging for supply

to settle

Vdly
Vth

CKDTC

VDD_DLY

/VDD_BUF

◼ Code-dependent charge on bottom plate of unit cap. array 

→ INL, memory effect
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0.3 LSB variation

⁰C

⁰C

⁰C

⁰C

DTC control code

◼ Master-slave regulator for fast settling

◼ Bleeding current 

↑ gm/C to speed up settling 

at cost of higher Idc

◼ Programmable R cover

process variation

High Performance DTC Design Example

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800

Regulator bleeding current, in µA

0 200 400 600 800M
a
x
. 

D
T

C
 I
N

L
, 

in
 L

S
B 2.4

1.6

1.2

0.8

0.4

0

2

◼ DTC code reset to “1” each cycle to 

fully discharge tuning cap.
Frequency, in Hz

D
T

C
 P

N
, 

d
B

c
/H

z

-166

-162

-158

-150

-154

10k 100k 1M 10M

DTC PN at 

CKREF = 104 MHz

Regulater

CKREF

R 

D1 10 bit

CLSB
Δtcmp

VDTCVramp

Reset 
CKDTC

DTC code

VDD

Vgate+
-

Master 

LDO

0.8V

DTC Core

Slave 

LDO

Slave 

LDO

Tres = 400fs

[W. Wu JSSC Dec 2021]
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Continue with DTC-Assisted PD in Analog PLL
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CK2

Vslope VS1 Vsmp

CS1 CS2

SPD

CK1

CKFB

   

   

Rslope

CKDTC Vref

CI

VCTRL

GM

CKREF
GM

Vctrl

CKFB

Vsmp

Vref
VCO

MMD

DSM

CKDTC

FCW
Φe(n)

+

-

KDTC

DTC

DTC code

CKVCO

SPD

Vref

~1ns

CKDTC

CK1 = CKFB

ΔΦ 

CK2

Vslope

VS1

VS2

◼ Vsmp is ZOH: 1st-order IIR filtering

◼ KSPD=𝐾𝑠𝑙𝑜𝑝𝑒/(2𝜋𝑓𝑟𝑒𝑓), for Kslope= 6GV/s, fref= 104 

MHz,     → KSPD =57/2π >> KPD in PFD-CP PLL

◼ GM can be μA, its noise suppressed by high KSPD

◼ Linearity of SPD not critical as DTC cancels QE

◼ Noise: ~200fF Cs1,2 results in <-170dBc/Hz 



Constant Slope DTC (I/C) 

◼ Pros: no slope dependent delay

◼ Cons: 

◼ Nonlinearity sources: I varies with code 

due to channel length mod., Vst settling 

error, etc.

◼ Flicker noise from I

◼ Need high VDD for high performance 

(e.g., 1.5V)

[J.Z. Ru JSSC June 2015]
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IDAC
RDAC

CL Vrst

Vd

outDTC

I-DAC

VDD

inDTC

inpch

VDD

GND
Vst

Vst1

Vst2
Vst3

Vd

outDTC

Vth

ΔtDTC

MN1

MP1

MP2 MP3

Y

Constant

slope Vst1

Vd

Ramp 

generation

Threshold

Comparison

Vst2

ΔtDTC =                dV 
CL(V)

IG(V)

Vth

Vst Vst

ΔtDTC

Non-

linear



Inverse-Constant-Slope DTC for Coarse-Fine DTC
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Constant slope DTC 

◼ DTC delay controlled by voltage Vpch → controlled by time Tpch

◼ Linearity affected to IG(V) and C(V) → immunity to IG(V) and C(V)

◼ Linearity affected by DAC → no need DAC

Too coarse, need another fine DTC

Tpch, Tdtc gen. uses DFFs and mux at fvco

ICS-DTC
[S. M. Dartizio ISSCC 2023]

ΔtDTC =                  dV 
CL(V)

K· IG(V)

Vth

0

Δtpch

K
-

Δtpch

ΔtDTC

K
1

Linear

ΔtDTC =                dV 
CL(V)

IG(V)

Vth

Vst Vst

ΔtDTC

Non-

linear

CG

I-D
A

C

CL

IG(V)

Vth

Vd

outDTC

inDTCVst

DTC code

CG1

CL

(K-1)· IG(V)

Vth

Vd

outDTC

inDTCinpch

CG0

IG(V)

Vd

Vth

Vpch Time
selpch

ΔtDTC

Δtpch
Δtpch=               dV 

CL(V)

IG(V)

Vpch

0
inDTC

outDTC

inpch



Pseudo-Differential DTC for Better Linearity
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◼ Two half-range DTCs → each DTC has better linearity

◼ Even-symmetric INL cancels

[D. Xu ISSCC 2024]



Digital Assisted Techniques for Linear DTC
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◼ DTC nonlinearity calibration (NLC) 

◼ Reverse-Concavity Variable-Slope DTC

◼ DTC range reduction with multiple VCO/DCO phases

Will be discussed next in digital calibration section
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Adaptive Filter Used in DPLL for Calibration
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For DTC gain calibration:

◼ h(k) is KDTC

◼ Input signal x(k): accumulated QE due to DSM, i.e., Φe.

◼ Error signal e(k): phase error between CKREF and CKFB

◼ CKDTC phase is the output signal y(k)

◼ CKFB phase is the desired output signal d(k)

ℎ 𝑘

LMS

CKREF
Dctrl

CKFB
TDC

DCO

MMD

DSM

CKDTC

FCW
Φe(n)

e[k]

LMS

KDTC

DTC

DTC 

code

1-Z-1
µ · Z-1

LMS adaptation

e(k)

x(k)

h(k)

DTC gain need to be accurate to ensure QN cancellation 



DTC Gain CAL in Analog Sampling PLL [1] 

◼ Issues of comparator, GM offset

CKREF
GM

Vctrl

CKFB

Vsmp

VrefSPD VCO

MMD

DSM

CKDTC

FCW
Φe(n)

e[k]

+

-

LMS

KDTC

DTC

DTC code

+

-

VGm_os

Vcmp_os

Vref

e[k]
+1

-1

+1

-1

0

0

+1

-1
0

Vcmp_os = VGm_os

Vcmp_os > VGm_os

Vcmp_os < VGm_os

e[k]

e[k]
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1-Z-1
µ · Z-1

LMS adaptation

e(k)

x(k)

h(k)



DTC Gain CAL in Analog Sampling PLL [2] 

◼ Single comparator gets sign of 

PHE, e[k] → LMS

◼ Remove DC offset in e[k] by 

adjusting Vref1

◼ Simple 1-bit ΔV-DAC is 

sufficient

[W. Wu JSSC 2019]

DAC

CKREF
GM

Vctrl

CKFB

Vsmp

VrefSPD VCO

MMD

DSM

CKDTC

FCW
Φe(n)

e[k]

+

-

LMS

KDTC

DTC

DTC code

+1

-1

Vref1
+

-

Δ  

VGm_os

Vcmp_os



Alternative Way to Get Zero-Mean PHE Sign [1]  

◼ Phase offset (∆Tof) varies over PVT

◼ Use coarse-fine DTC to compensate ∆Tof →

POC-DTC tracks ∆Toff over PVT

◼ Error_Sign[k] is zero-mean after convergence

[P. Renukaswamy ISSCC 2023]
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[M. Mercandelli ISSCC 2020]

Vtune1

Rz

Cz Cp

fVCO

VCO

÷N/(N+1)

BufPFD CP

UP

DOWNDiv

Ref Icp
Refin

DTC 

ΔΣ 
Fmod[k]

VZ

QDAC
Dmod[k]

V
tu

n
e2

Error_Sign[k]1-b

TDC

ΔΣ 

Pmod[k]



Alternative Way to Get Zero-Mean PHE Sign [2]  

◼ Phase offset (∆Tof) varies over PVT

◼ Use coarse-fine DTC to compensate ∆Tof →

POC-DTC tracks ∆Toff over PVT

◼ Error_Sign[k] is zero-mean after convergence

[P. Renukaswamy ISSCC 2023]
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[M. Mercandelli ISSCC 2020]



DTC NLC – Polynomial CAL

[H. Park ISSCC 2021]

g2=g3=0

with 2nd and 3rd order NLC

DTC code

e[k]

DTC 

code

(DDCW)

DAQ

Φe(n)

◼ Intrinsic INL of a RC-delay based DTC has strong 2nd order NL

◼ Use LMS loop to get DTC gain (g1), as well as its 2nd and 3rd order component 

(g2 and g3); DAQ is accumulated DSM phase error, 
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Reverse-Concavity Variable-Slope DTC
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◼ Conventional variable-slope DTC

◼ Change RU to compensate NL

Voltage DAC controls RU

Adaptation loop find DAC code

[M.Rossoni ISSCC 2024]



DTC Range Reduction for Better Linearity

Recap DTC tradeoffs

◼ DTC Delay Range (DR):  𝑫𝑹 ∝ TVCO, DSM order 

◼ DTC QN ∝ 𝒕𝒓𝒆𝒔
𝟐

◼ DTC thermal noise 𝓛 ∝ DR: 

◼ DTC linearity better for smaller 𝑫𝑹

◼ DTC power ∝ 𝑫𝑹𝟐

𝑫𝑹 = 𝟐𝒏 ∙ 𝒕𝒓𝒆𝒔 = 𝟐𝒏 ∙ 𝒍𝒏𝟐 ∙ 𝑹𝑪𝑳𝑺𝑩

𝓛 ≅ 𝟏𝟎 ∙ 𝒍𝒐𝒈𝟏𝟎 𝟐𝒌𝑻 ∙ 𝒇𝒓𝒆𝒇
𝟐𝝅 𝟐

𝒍𝒏 𝟐
∙ 𝑫𝑹 ∙ 𝑹

DR↓→ less bits, faster slope, lower noise and power, more linear
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Half DTC Range with Two VCO Phases

◼ Switching from CKFB1 to CKFB2 

introduces a half-period delay

SEL_CKFB

Φe(n)

Example of a MASH1-1 DSM

0.5Tvco

- 0.5Tvco

0

Proposed MMD and DSM

Conventional MMD and DSM

0

0.5 Tvco

Tvco

SEL_CKFB

Φe(n)

Example of a MASH1 DSM

Modified DSM

[W. Wu ISSCC 2021]

X 2 DSM
Fractional 

part of 
FCW

NDIV_tmp

÷ 2

co

Z
-1

Z
-nsum

n n-1

Integer part of FCW

NDIV

SEL_CKFB

-

Acc. ÷ 2 Φe(n)
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VCTRL_P
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CI

CKREF
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SPD VCO

CKFB

CKDTC

NDIV
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VCO Duty Cycle Error Disrupts KDTC CAL
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VCO Duty Cycle Calibration

e[k]

Sign (SEL_CKFB):

+1, -1

vco_dcc
1-Z

-1
α· Z

-1

Sign LMS

FCW
Φe(n)

KDTC

DSM

-

+
 z

-1
 

DTC code

CKFB1

CKFB2

CKVCO

CKVCO

Δterr = Δt - Tvco/2

Δt

◼ SEL_CKFB = +1 → push back CKDTC by ∆terr/2

◼ SEL_CKFB = -1 → pull-in CKDTC by ∆terr/2

[W. Wu ISSCC 2021]
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Simulated KDTC CAL and DTC Code

◼ KDTC converges 

< 30µs, even 

with 12% VCO 

duty cycle error

◼ DTC code range 

is halved
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FCAL_DONE

FLL_LOCK

23us 91us

With DTC range reduction
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With DTC range reduction

without
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1/8 DTC Range Reduction Using 8 RO Phases

◼ SOUT[7:0] are 8 phases from differential ring oscillator

◼ Timing of QTM-PS is stringent 

To DTC

To PD

RO

Codes for DTC gain, RO phase mismatch (DRPEC) 

from background LMS-based calibrations

[C. Hwang ISSCC 2022] 38



Low Jitter Sampling Analog PLL Example
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[W. Wu ISSCC 2021]

PFD-CP FLL
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Simulated Background Calibration

◼ All calibrations converge < 30us and track PVT

◼ Works robustly for both integer and fractional channels
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Measured Fractional-N Spurs and Jitter
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PN Contributors in Low-Jitter DTC-Assisted PLL

MMDIV  ΔM QE

Frequency (Hz)

After suppress noise from PD, DSM 

QN, MMD →

❑ PLL IPN is dominated by

◼ CKREF – external clock ref.

◼ VCO/DCO

❑ PLL BW is chosen to tradeoff the 

contribution of the two

→ Common for any PLLs
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Outline

43

▪ Fractional-N PLL Design Challenges

▪ PLL Architecture Review 

▪ DTC-Assisted Phase Detector Design

▪ Digital Calibrations to Enhance PLL Performance

▪ LO Chain Design Example for 5G NR



5G New Radio Frequency Bands

44

24–30GHz

37 39 41 43 48GHz47
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5G FR2 Band Uplink/Downlink (GHz) Channel bandwidth (MHz)



Smart Phones with 5G mmW Chipset

https://www.ifixit.com/Guide/Google+Pixel+7+Pro+5G+

mmWave+Antenna+Replacement/154719

https://unitedlex.com/insights/apple-

iphone-13-pro-max-teardown-report/

https://www.techinsights.com/blog/muratasamsung-2nd-gen-

mmwave-aip-discovered-samsung-galaxy-a53

mmW AiP

mmW AiP2

mmW AiP1

mmW AiP

mmW IFIC

5G Modem

FR1 RFIC
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◼ FR2 system 

Modem + mmW IFIC + mmW AiP



LO Design Challenges for 5G mmW
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◼ mmW LO circuitry on both IFIC and BFIC

◼ Transceiver SNR is limited by LO IPN

◼ Multi-band support with low power and low cost

◼ 256-QAM support demands low jitter LO



LO Topology Considerations

÷2

÷N1

LO_IF
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14~20 GHz 
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I/Q IF mixer RF mixers

76.8MHz
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IFIC BFIC

RF-PLL

Frac.-N PLL
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[W. Wu RFIC 2023]

◼ IFIC generates LO_IF & reference clock (LO_CLK) for BFIC

◼ Low-jitter frac.-N PLL dominates LO chain IPN

◼ BFIC PLL simplifies to an integer-N of wide BW (e.g., SSPLL) 

◼ Low-power as VCO PN is relaxed

◼ Compact area: one wideband VCO for both LB and HB



Low-Jitter Fractional-N PLL Directly at mmW
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-

Dual-core VCO at 18GHz
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[W. Wu RFIC 2023]

◼ DTC-based sampling PLL 

→ low jitter

◼ VCO operates at 18 GHz 

→ no multiplier, low power

◼ Dual-core VCO → low jitter



Low PN LC Oscillator Design

[D. Murphy JSSC Nov 2018]

Resonator power 𝑷= 
𝑽𝑻𝒂𝒏𝒌
𝟐

𝟐𝑹𝒑
=

𝑽𝑻𝒂𝒏𝒌
𝟐

𝟐𝝎𝟎𝑳𝑸

𝑷𝑵𝒅𝑩 = 𝟏𝟎𝒍𝒐𝒈𝟏𝟎
𝝎𝟎

𝟐𝑸∆𝝎

𝟐
𝟐𝑭𝒌𝑻

𝑷
= 𝟏𝟎𝒍𝒐𝒈𝟏𝟎

𝝎𝟎

∆𝝎

𝟐 𝑭𝒌𝑻𝝎𝟎

𝑽𝑻𝒂𝒏𝒌
𝟐

𝑳

𝑸

◼ VTank, F set by process

◼ Scaling L as long as 
𝑳

𝑸
can be reduced to lower PN

◼ Beyond this limit → use multi-core oscillator

𝑳𝒆𝒒 = Τ𝑳 𝑵, 𝑪𝒆𝒒 = 𝑵 ∙ 𝑪→ 𝐬𝐚𝐦𝐞 𝝎𝟎, same Q 

𝑷𝑵𝒎𝒖𝒍𝒕𝒊−𝒄𝒐𝒓𝒆 = 𝑷𝑵𝟎 − 𝟏𝟎𝒍𝒐𝒈𝟏𝟎 𝑵
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Switchable Dual-core VCO for Power, PN Tradeoff

◼ Good EM isolation, symmetrical → same fvco for 1- or 2-core 

◼ Figure-8 tail Ls put inside main L to save area

◼ N=1: -120 dBc/Hz @1MHz measured at 6GHz  

◼ N=2: -122.5 dBc/Hz 
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VCO core 2VCO core 1

VAR VAR
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GND
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GND
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LS1

. . .
 

. . .
x   x   x

x   x   x

LS2

L2

M8

M9

Switched
CAP
Bank

GND ring

VDD1

M9: top thick metal

[W. Wu ISSCC 2021]

VDDOSC1 =0.5V

MN1 MN2

Switched CAP 
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Voutp
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VCO core #1

Vctrl_T

Vctrl_I / Vctrl_p

50



LO Configuration to Further Improve IPN
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◼ 256-QAM requires rms jitter of ~100 fs

◼ Hard to further reduce rms jitter of IF-PLL → use two IF-PLLs

◼ PN of LO_IF and LO_RF are mostly uncorrelated → lower chain IPN



Measured Chain IPN at 28 GHz and 38 GHz

▪ Dual-PLL results in ~1.6 dB lower chain IPN

▪ -37.49 dBc IPN at 28 GHz → EVM floor of 1.34%

▪ -34.29 dBc IPN at 38 GHz → 112 fs rms jitter, EVM floor of 1.9% 

-35.92 dBc

-37.49 dBc

     28-GHz chain PN using PLL1 only

     28-GHz chain PN using dual-PLL

-32.57 dBc

-34.29 dBc

-47.02 dBc

     9-GHz IF output PN     

     38-GHz chain PN using PLL1 only

     38-GHz chain PN using dual-PLL     

-32.57 dBc

-34.29 dBc

-47.02 dBc

     9-GHz IF output PN     

     38-GHz chain PN using PLL1 only

     38-GHz chain PN using dual-PLL     
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[W. Wu RFIC 2023, Samsung]



Summary

◼ Advanced wireless application requires frac. N PLLs of < 100 fsrms

◼ PLLs with DTC-assisted PD have demonstrates low jitter, high FoM

◼ DTC cancels DSM QE → eases PD design

◼ Various design techniques aim to improve DTC linearity

◼ Intensive digital calibrations enhance PLL performance

◼ Multi-core VCO breaks design limit of single core with same VCO FoM
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