Design of DTC-Assisted High Performance Fractional-N PLLs

Wanghua Wu

Samsung Semiconductor

2024/11/10

Outline

- Fractional-N PLL Design Challenges
- PLL Architecture Review
- DTC-Assisted Phase Detector Design
- Digital Calibrations to Enhance PLL Performance
- LO Chain Design Example for 5G NR

Demand for Low Jitter Fractional-N PLLs

Latest wireless standards strive for very high throughput

- WiFi 7 enables 4k-QAM at 7GHz
- Cellular FR2 (MMW) transceivers to support 256-QAM at 40+ GHz

→ RMS jitter <100fs is required for LO

DSB IPN		Integrated RMS jitter (fs) (Int. 1kHz to 100MHz)				
Requirement (dBc)		29.5GHz	40GHz	43GHz	47GHz	7.125GHz
64-QAM	-30	171	126	117	107	707
256-QAM	-33	121	89	83	76	500
1K-QAM	-44	NA	NA	NA	NA	141
4K-QAM	-47	NA	NA	NA	NA	99.8

State-of-the-Art Low Jitter Fractional-N PLLs

- A few frac. N PLLs achieved <100fs_{rms} jitter; FoM is still worse than integer-N PLLs
- Even harder for mmW PLLs due to mmW VCO
- Analog/digital PLLs using DTCassisted PD achieves lower jitter and better FoM

Major Noise Source in Any PLLs

- Major noise source in a PLL
 - VCO/DCO → Dominate

 - Phase detector (PD) \rightarrow try to minimize
 - Feedback divider → negligible

SSB PN contributors at a low jitter 6-GHz PLL output

Extra Challenges in Fractional-N PLLs

DSM QN

- Much wider dynamic range (DR) needed in PD
- Fractional spurs:
 - MMD, PD nonlinearity → result in noise folding, higher inband noise
 - Coupling between VCO/DCO and PD/CLKREF

Major PLL Topologies – PD is Key Difference

Analog PLL using PFD-CP

DPLL using TDC: small LF size, flexible calibration and configurability

PLL using DTC-assisted PD

Show more advantages, gain popularity in both academia and industry

PD		Thermal/flicker noise, maybe QN
design	•	Linearity over required DR
	•	P _{dc}
metrics		Complexity, area

Outline

- Fractional-N PLL Design Challenges
- PLL Architecture Review
- DTC-Assisted Phase Detector Design
- Digital Calibrations to Enhance PLL Performance
- LO Chain Design Example for 5G NR

Advantages of DTC-assisted PD

- DTC is a Digital-to-Time Converter
- DTC cancels accumulated QE on CKFB due to DSM
- → Near zero phase error at PD after locking

Just like integer-N case!

→ Can use high gain PD of small dynamic range for lower inband noise, high linearity, lower P_{dc}...

DTC-based PLL Variations – Digital PLLs

DTC-based ADPLL (1st order DSM)

Digital sampling PLL

DTC-based Bang-bang PLL

[D. Tasca JSSC Dec. 2011]

- Pros: Φ_e is 1- or n-bit digital word \rightarrow Used for LMS based K_{DTC} calibration
 - DLF small chip area
- Cons:■ BBPD simpler than TDC (sampler+ADC), but need aux circuits to linearize its gain, and achieve fast locking
 - Need DCO

DTC-based PLL Variations – Analog PLLs

Analog PLL using sub-sampling PD

[K. Raczkowski JSSC May 2015]

Analog PLL using sampling PD (SPD)

[W. Wu JSSC May 2019]

Pros: PD is a simple sample-hold circuit

- K_{PD} is linear and well-defined vs. BBPD
- No high-resolution TDC, no DCO

Cons:

- LF C₁ for optimal IPN ≤ 50pF typically (small overhead); type-I removes C₁
- Need to digitize Φ_e for calibrations

[P. Renukaswamy ISSCC 2023]

DTC vs. TDC as Phase Detector

TDC-based digital PLL

- In-band noise limited by TDC QN
- $\Delta t \sim 8 ps in 14 nm CMOS$
- **Finer** $\tau \rightarrow$ Complexity \uparrow

coarse-fine, Vernier delay line, timing amplifier, noise shaping, stochastic flash TDC, ...

- DTC-based analog/digital PLL
 - QN < other noise</p>
 - Δt ~ 100fs in 14nm CMOS
 - Broadly applicable
 - Bang-bang
 - Type-I/II (sub)sampling
 - Digital (sub)sampling ₁₂

Outline

- Fractional-N PLL Design Challenges
- PLL Architecture Review
- DTC-Assisted Phase Detector Design
 - RC Delay Based DTC
 - Other DTC Topologies for high linearity
- Digital Calibrations to Enhance PLL Performance
- LO Chain Design Example for 5G NR

RC Delay Based DTC- Variable Slope DTC

DTC contributes to PLL integrated PN (IPN)

- DTC RMS jitter → inband PN
- DTC quantization noise → inband PN
- DTC nonlinearity → frac. N spurs and noise folding

DTC Noise: Quantization Noise

DTC QN

Unit delay $T_{res} = \ln 2 \cdot R \cdot C_{LSB}$ Input referred (at CKREF) $\Phi_{\text{DTC, QN}} = \frac{(2\pi \cdot T_{res})^2}{12} \cdot f_{ref}$ e.g., $T_{res} = 400$ fs, $f_{ref} = 104$ MHz, $\rightarrow \Phi_{\text{DTC, QN, in dBc/Hz}} = -163$ dBc/Hz

10bit \rightarrow total delay range, DR = 400ps, can support 2nd-order DSM with f_{vco}> 5GHz

DTC Noise: Thermal Noise

DTC thermal noise: delay stage and INV buffer

1) PN from delay stage:

Depends on slew of V_{dly}, thus, DTC code SSB PN sampled at half VDD transition considering noise folding is

$$\mathcal{L} \cong 10 \cdot \log_{10} \left[\frac{1}{2} \left(\frac{2\pi \cdot f_{ref}}{k_{slew}} \right)^2 \cdot S_v^{folded}(f_m) \right], \, k_{slew} = \frac{1}{2RC} \text{ at } \frac{VDD}{2}, \, S_v^{folded}(f_m) \cong \frac{KT/C}{f_{out}/2}$$

$$\Rightarrow \mathcal{L} \cong 10 \cdot \log_{10} \left[2kT \cdot f_{ref} \left(\frac{2\pi}{\ln 2} \right)^2 \cdot \frac{2^n \cdot T_{res}^2}{C_{LSB}} \right] \text{ at mid code,}$$

e.g., C_{LSB} needs ≥ 2fF for PN floor < - 171dBc/Hz

2) PN from INV buffer dominates:

INV BUF size up to hundreds of μm Width

[W. Wu JSSC 2019]

DTC Nonlinearity – Static Distortion

- Matching of capacitor array \rightarrow not dominate as $C_{LSB} \ge 2fF$
- Common centroid layout, DEM to achieve DNL= ±0.2 LSB for 10bit DTC
- **Code/slope dependent** $\Delta t_{cmp} \rightarrow INL$, dominate!
- Fixed cap. (e.g., 1~2 pF) reduces INL < ~2 LSB
- Parasitic cap of INV BUF serves as fixed cap

DTC Nonlinearity – Dynamic Distortion

■ Code-dependent supply settling error → INL, memory effect, dominate! Large transient current at CKREF edges, supply dips and resettle each cycle

■ Code-dependent charge on bottom plate of unit cap. array → INL, memory effect

High Performance DTC Design Example

DTC code reset to "1" each cycle to fully discharge tuning cap.

- Master-slave regulator for fast settling
- Bleeding current
 ↑ gm/C to speed up settling
 at cost of higher I_{dc}
- Programmable R cover process variation

[W. Wu JSSC Dec 2021]

Continue with DTC-Assisted PD in Analog PLL

- Vsmp is ZOH: 1st-order IIR filtering
- $K_{SPD} = K_{slope} / (2\pi f_{ref})$, for $K_{slope} = 6GV/s$, $f_{ref} = 104$ MHz, $\rightarrow K_{SPD} = 57/2\pi >> K_{PD}$ in PFD-CP PLL
- G_M can be µA, its noise suppressed by high K_{SPD}
- Linearity of SPD not critical as DTC cancels QE

Constant Slope DTC (I/C)

- Pros: no slope dependent delay
- Cons:
 - Nonlinearity sources: I varies with code due to channel length mod., V_{st} settling error, etc.
 - Flicker noise from I
 - Need high VDD for high performance (e.g., 1.5V)

Inverse-Constant-Slope DTC for Coarse-Fine DTC

- DTC delay controlled by voltage Vpch
- Linearity affected to I_G(V) and C(V)
- Linearity affected by DAC

- \rightarrow controlled by time Tpch
- \rightarrow immunity to I_G(V) and C(V)
- \rightarrow no need DAC

Too coarse, need another fine DTC

 $T_{pch},\,T_{dtc}$ gen. uses DFFs and mux at fvco $_{\rm 22}$

Pseudo-Differential DTC for Better Linearity

Digital Assisted Techniques for Linear DTC

- DTC nonlinearity calibration (NLC)
- Reverse-Concavity Variable-Slope DTC
- DTC range reduction with multiple VCO/DCO phases

Will be discussed next in digital calibration section

Outline

- Fractional-N PLL Design Challenges
- PLL Architecture Review
- DTC-Assisted Phase Detector Design
- Digital Calibrations to Enhance PLL Performance
 - DTC Gain CAL, NLC, Range Reduction
- LO Chain Design Example for 5G NR

Adaptive Filter Used in DPLL for Calibration

DTC gain need to be accurate to ensure QN cancellation

For DTC gain calibration:

- h(k) is K_{DTC}
- Input signal x(k): accumulated QE due to DSM, i.e., Φe.
- Error signal e(k): phase error between CKREF and CKFB
- CKDTC phase is the output signal y(k)
- CKFB phase is the desired output signal d(k)

DTC Gain CAL in Analog Sampling PLL [1]

■ Issues of comparator, G_M offset

DTC Gain CAL in Analog Sampling PLL [2]

- Single comparator gets sign of PHE, e[k] → LMS
- Remove DC offset in e[k] by adjusting V_{ref1}
- Simple 1-bit ΔV-DAC is sufficient

[W. Wu JSSC 2019]

Alternative Way to Get Zero-Mean PHE Sign [1]

- Phase offset (ΔT_{of}) varies over PVT
- Use coarse-fine DTC to compensate △T_{of} → POC-DTC tracks △Toff over PVT
 - Error_Sign[k] is zero-mean after convergence

Alternative Way to Get Zero-Mean PHE Sign [2]

- Phase offset (△T_{of}) varies over PVT
- Use coarse-fine DTC to compensate △T_{of} → POC-DTC tracks △Toff over PVT
 - Error_Sign[k] is zero-mean after convergence

DTC NLC – Polynomial CAL

- Intrinsic INL of a RC-delay based DTC has strong 2nd order NL
- Use LMS loop to get DTC gain (g_1), as well as its 2nd and 3rd order component (g_2 and g_3); D_{AQ} is accumulated DSM phase error, $\Phi_e(n)$

Reverse-Concavity Variable-Slope DTC

Change R_U to compensate NL
 Voltage DAC controls R_U
 Adaptation loop find DAC code

[[]M.Rossoni ISSCC 2024]

DTC Range Reduction for Better Linearity

Recap DTC tradeoffs

DTC Delay Range (*DR***):** $DR \propto T_{VCO}$, DSM order

 $\square \text{ DTC QN} \propto t_{res}^2 \qquad DR = 2^n \cdot t_{res} = 2^n \cdot \ln 2 \cdot RC_{LSB}$

- **DTC thermal noise** $\mathcal{L} \propto DR$: $\mathcal{L} \cong 10 \cdot \log_{10} \left[2kT \cdot f_{ref} \frac{(2\pi)^2}{\ln 2} \cdot DR \cdot R \right]$
- DTC linearity better for smaller DR
- **DTC power** $\propto DR^2$

DR↓ → *less bits, faster slope, lower noise and power, more linear*

Half DTC Range with Two VCO Phases

Switching from CKFB1 to CKFB2 introduces a half-period delay

[W. Wu ISSCC 2021]

VCO Duty Cycle Error Disrupts K_{DTC} CAL

VCO Duty Cycle Calibration

■ SEL_CKFB = +1 → push back CKDTC by $\Delta t_{err}/2$ ■ SEL_CKFB = -1 → pull-in CKDTC by $\Delta t_{err}/2$

[W. Wu ISSCC 2021]

Simulated K_{DTC} CAL and DTC Code

- KDTC converges
 < 30µs, even
 with 12% VCO
 duty cycle error
- DTC code range is halved

1/8 DTC Range Reduction Using 8 RO Phases

- S_{OUT}[7:0] are 8 phases from differential ring oscillator
- RO Quadruple-Timing-Margin P-SEL(QTM-PS Sout[7:0] SDIV. Resampling Sout [4], S_{OUT}[0] To PD Window S_{OUT}[0] 8:1MUX S_{MMD} MMD Gen. WIN[1:0] DINT **D**_{PS}[2:0] DMMD DFRAC 1st order D_{DCW.R} **Compensation Logic D**_{DCW,D} To DTC Codes for DTC gain, RO phase mismatch (D_{RPEC}) from background LMS-based calibrations

Timing of QTM-PS is stringent

Low Jitter Sampling Analog PLL Example

Simulated Background Calibration

- All calibrations converge < 30us and track PVT</p>
- Works robustly for both integer and fractional channels

Measured Fractional-N Spurs and Jitter

fvco (MHz)

PN Contributors in Low-Jitter DTC-Assisted PLL

After suppress noise from PD, DSM QN, MMD \rightarrow

- □ PLL IPN is dominated by
 - CKREF external clock ref.
 - VCO/DCO
- PLL BW is chosen to tradeoff the contribution of the two
- \rightarrow Common for any PLLs

Outline

- Fractional-N PLL Design Challenges
- PLL Architecture Review
- DTC-Assisted Phase Detector Design
- Digital Calibrations to Enhance PLL Performance
- LO Chain Design Example for 5G NR

5G New Radio Frequency Bands

5G FR2 Band	Uplink/Downlink (GHz)	Channel bandwidth (MHz)
N257	TDD 26.5 – 29.5	50, 100, 200, 400
N258	TDD 24.25 – 27.5	50, 100, 200, 400
N259	TDD 39.5 – 43.5	50, 100, 200, 400
N260	TDD 37.0 – 40.0	50, 100, 200, 400
N261	TDD 27.5 – 28.35	50, 100, 200, 400

Smart Phones with 5G mmW Chipset

FR2 system

Modem + mmW IFIC + mmW AiP

https://www.ifixit.com/Guide/Google+Pixel+7+Pro+5G+ mmWave+Antenna+Replacement/154719

The second secon

https://www.techinsights.com/blog/muratasamsung-2nd-genmmwave-aip-discovered-samsung-galaxy-a53

mmW AiP

LO Design Challenges for 5G mmW

- mmW LO circuitry on both IFIC and BFIC
- Transceiver SNR is limited by LO IPN
- Multi-band support with low power and low cost
- 256-QAM support demands low jitter LO

LO Topology Considerations

- IFIC generates LO_IF & reference clock (LO_CLK) for BFIC
- Low-jitter frac.-N PLL dominates LO chain IPN
- BFIC PLL simplifies to an integer-N of wide BW (e.g., SSPLL)
 - Low-power as VCO PN is relaxed
 - Compact area: one wideband VCO for both LB and HB

IFIC

BFIC

Low-Jitter Fractional-N PLL Directly at mmW

- DTC-based sampling PLL
 → low jitter
- VCO operates at 18 GHz
 → no multiplier, low power
- Dual-core VCO → low jitter

Low PN LC Oscillator Design

Switchable Dual-core VCO for Power, PN Tradeoff

LO Configuration to Further Improve IPN

- 256-QAM requires rms jitter of ~100 fs
- Hard to further reduce rms jitter of IF-PLL → use two IF-PLLs
- PN of LO_IF and LO_RF are mostly uncorrelated → lower chain IPN

Low-power mode for 64-QAM/QPSK

Low-jitter mode for 256-QAM

Measured Chain IPN at 28 GHz and 38 GHz

^{6.000} dB Ref Value -70.00 dBcHz Integ Noise -34.29 dBc - -32.57 dBc - -34.29 dBc - -47.02 dBc -

Trig: Free Run

Sig Tracking: On

IF Gain: Low

Atten: 12 dB

Carrier Power 1.59 dBm

Preamp: Off

Carrier Freq: 38.079972773 GHz

Mkr1 50.0 MHz

Phase Noise Cancellation: Off

Avg|Hold: 10/10

- Dual-PLL results in ~1.6 dB lower chain IPN
- -37.49 dBc IPN at 28 GHz \rightarrow EVM floor of 1.34%
- -34.29 dBc IPN at 38 GHz \rightarrow 112 fs rms jitter, EVM floor of 1.9%

[[]W. Wu RFIC 2023, Samsung]

Summary

- Advanced wireless application requires frac. N PLLs of < 100 fs_{rms}
- PLLs with DTC-assisted PD have demonstrates low jitter, high FoM
- **DTC cancels DSM QE** \rightarrow eases PD design
- Various design techniques aim to improve DTC linearity
- Intensive digital calibrations enhance PLL performance
- Multi-core VCO breaks design limit of single core with same VCO FoM

References [1]

[1] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts and B. Nauta, "Jitter analysis and a benchmarking figure-of-merit for phase-locked loops", in *IEEE Trans. Circuits Syst. II*, vol. 56, pp. 117-121, Feb. 2009.

[2] D. Tasca et al., "A 2.9-to-4.0 GHz fractional-*N* digital PLL with bang-bang phase detector and 560 fsrms integrated jitter at 4.5 mW power," in *IEEE J. Solid-State Circuits*, vol. 46, no. 12, pp. 2745–2758, Dec. 2011.

[3] N. Markulic et al., "A 10-bit, 550-fs step Digital-to-Time Converter in 28nm CMOS," in Proc. 40th European Solid-State Circuits Conf. (ESSCIRC), Venice Lido, 2014, pp. 79-82.

[4] J. Z. Ru et al., "A High-Linearity Digital-to-Time Converter Technique: Constant-Slope Charging," in IEEE J. of Solid-State Circuits, vol. 50, no. 6, pp. 1412-1423, June 2015.

[5] S. Levantino et al., "An adaptive pre-distortion technique to mitigate the DTC nonlinearity in digital PLLs," in IEEE J. Solid-State Circuits, vol. 49, no.8, pp. 1762–1772, Aug. 2014.

[6] C. Yao et al., "A 14-nm 0.14-ps_{rms} Fractional-*N* Digital PLL With a 0.2-ps Resolution ADC-Assisted Coarse/Fine-Conversion Chopping TDC and TDC Nonlinearity Calibration," in *IEEE J. Solid-State Circuits*, vol. 52, no. 12, pp. 3446–3457, Dec. 2017.

[7] D. Murphy et al., "A 27-GHz Quad-Core CMOS Oscillator With No Mode Ambiguity", in IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3208-3216, Nov. 2018.

[8] S. A. Ahmadi-Mehr et al., "Analysis and Design of a Multi-Core Oscillator for Ultra-Low Phase Noise," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 63, no. 4, pp. 529-539, April 2016.

[9] D. Griffith et al., "An Integrated BAW Oscillator with <±30ppm Frequency Stability Over Temperature, Package Stress, and Aging Suitable for High-Volume Production," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, pp. 58-60, Feb. 2020.

[10] B. Bahr, A. Kiaei, M. Chowdhury, B. Cook, S. Sankaran and B. Haroun, "Near-Field-Coupled Bondless BAW Oscillators in WCSP Package with 46fs Jitter," 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2021, pp. 155-158.

[11] D. Yang et al., "A Sub-100MHz Reference-Driven 25-to-28GHz Fractional-N PLL with -250dB FoM," 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, pp. 384-386

[12] S. Kalia et al., "A Sub-100fs JitterRMS, 20-GHz Fractional-N Analog PLL using a BAW Resonator Based 2.5GHz On-Chip Reference in 22-nm FD-SOI Process," 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2021, pp. 151-154.

[13] . Jung et al., "A 52MHz -158.2dBc/Hz PN @ 100kHz Digitally Controlled Crystal Oscillator Utilizing a Capacitive-Load-Dependent Dynamic Feedback Resistor in 28nm CMOS," 2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022, pp. 60-62.

References [2]

[14] C. Hwang, H. Park, T. Seong and J. Choi, "A 188fsrms-Jitter and –243d8-FoMjitter 5.2GHz-Ring-DCO-Based Fractional-N Digital PLL with a 1/8 DTC-Range-Reduction Technique Using a Quadruple-Timing-Margin Phase Selector," *2022 IEEE International Solid- State Circuits Conference (ISSCC)*, 2022, pp. 378-380.

[15] A. Franceschin, D. Riccardi and A. Mazzanti, "Series-Resonance BiCMOS VCO with Phase Noise of -138dBc/Hz at 1MHz Offset from 10GHz and -190dBc/Hz FoM," 2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022, pp. 1-3.

[16] H. Park, C. Hwang, T. Seong, Y. Lee and J. Choi, "32.1 A 365fsrms-Jitter and -63dBc-Fractional Spur 5.3GHz-Ring-DCO-Based Fractional-N DPLL Using a DTC Second/Third- Order Nonlinearity Cancelation and a Probability-Density-Shaping $\Delta\Sigma M$," 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, pp. 442-444.

[17] W. Wu et al., "A 14-nm Ultra-Low Jitter Fractional-N PLL Using a DTC Range Reduction Technique and a Reconfigurable Dual-Core VCO," in *IEEE Journal of Solid-State Circuits*, vol. 56, no. 12, pp. 3756-3767, Dec. 2021.

[18] E. Thaller et al., "A K-Band 12.1-to-16.6GHz Subsampling ADPLL with 47.3fsrms Jitter Based on a Stochastic Flash TDC and Coupled Dual-Core DCO in 16nm FinFET CMOS," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, pp. 451-453, Feb. 2021.

[19] D. Turker et al., "A 7.4-to-14GHz PLL with 54fsrms jitter in 16nm FinFET for integrated RF-data-converter SoCs," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, pp. 378-380, Feb. 2018.

[20] Y. Hu et al., "A 21.7-to-26.5GHz Charge-Sharing Locking Quadrature PLL with Implicit Digital Frequency-Tracking Loop Achieving 75fs Jitter and –250dB FoM," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, pp. 276-278, Feb. 2020.

[21] J. Kim et al., "A 76 fsrms Jitter and -40 dBc integrated-phase-noise 28-to-31 GHz frequency synthesizer based on digital sub-sampling PLL using optimally spaced voltage comparators and background loop-gain optimization," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, pp. 258–259, Feb. 2019.

[22] J. Gong et al., "A 10-to-12 GHz 5 mW Charge-Sampling PLL Achieving 50 fsec RMS Jitter, -258.9 dB FOM and -65 dBc Reference Spur," in *IEEE Radio Frequency Integrated Circuits Symp. Dig.*, pp. 15-18, 2020.

[23] Z. Zhang, G. Zhu and C. Patrick Yue, "A 0.65-V 12–16-GHz Sub-Sampling PLL With 56.4-fsrms Integrated Jitter and –256.4-dB FoM," *in IEEE J. Solid-State Circuits*, vol. 55, no. 6, pp. 1665-1683, June 2020.

[24] Z. Yang et al., "A 25.4-to-29.5GHz 10.2mW Isolated Sub-Sampling PLL Achieving -252.9dB Jitter-Power FoM and -63dBc Reference Spur," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, pp. 270-272, Feb. 2019.

[25] A. Santiccioli et al., "A 66-fs-rms Jitter 12.8-to-15.2-GHz Fractional-N Bang–Bang PLL With Digital Frequency-Error Recovery for Fast Locking," in *IEEE J. Solid-State Circuits*, vol. 55, no. 12, pp. 3349-3361, Dec. 2020.

References [3]

[26] W. Wu et al., "A 28-nm 75-fsrms Analog Fractional-N Sampling PLL With a Highly Linear DTC Incorporating Background DTC Gain Calibration and Reference Clock Duty Cycle Correction," in *IEEE J. of Solid-State Circuits*, vol. 54, no. 5, pp. 1254-1265, May 2019.

[27] M. Mercandelli et al., "A 12.5GHz Fractional-N Type-I Sampling PLL Achieving 58fs Integrated Jitter", in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, pp. 274-276, Feb. 2020.

[28] X. Gao et al., "A 2.7-to-4.3GHz 0.16 ps rms jitter, -246.8 dB FOM digital fractional-N sampling PLL in 28nm CMOS," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.* Papers, San Francisco, CA, pp. 174–175, Feb. 2016.

[29] N. Markulic et al., "A DTC-Based Subsampling PLL Capable of Self-Calibrated Fractional Synthesis and Two-Point Modulation," in *IEEE J. Solid-State Circuits*, vol. 51, no. 12, pp. 3078-3092, Dec. 2016.

[30] L. Bertulessi et al., "A 30-GHz Digital Sub-Sampling Fractional-N PLL With –238.6-dB Jitter-Power Figure of Merit in 65-nm LP CMOS," in *IEEE J. of Solid-State Circuits*, vol. 54, no. 12, pp. 3493-3502, Dec. 2019.

[31] W. Wu et al., "A 14nm Analog Sampling Fractional-N PLL with a Digital-to-Time Converter Range-Reduction Technique Achieving 80fs Integrated Jitter and 93fs at Near-Integer Channels," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, San Francisco, CA, pp. 444-446, Feb. 2021.

[32] M. B. Dayanik, N. Collins and M. P. Flynn, "A 28.5–33.5 GHz fractional-N PLL using a 3rd order noise shaping time-to-digital converter with 176 fs resolution ", in Proc. 40th European Solid-State Circuits Conf. (ESSCIRC), pp. 376-379, Sep. 2015.

[33] W. Wu, R. B. Staszewski and J. R. Long, "A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS", in IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1081-1096, May 2014.

[34] Y.-L. Hsueh et al., "A 0.29mm2 frequency synthesizer in 40nm CMOS with 0.19psrms jitter and <-100dBc reference spur for 802.11ac," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, pp. 472–474, Feb. 2014.

[35] Z. Zong et al., "A Low-Noise Fractional-N Digital Frequency Synthesizer With Implicit Frequency Tripling for mm-Wave Applications," in IEEE J. of Solid-State Circuits, vol. 54, no. 3, pp. 755-767, March 2019.

[36] F. Song et al., "A Fractional-N Synthesizer with 110fsrms Jitter and a Reference Quadrupler for Wideband 802.11ax," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, pp. 264-266, Feb. 2019.

[37] Y. Lim, et al., "A 170MHz-lock-in-range and -253dB-FoMjitter, 12-to-14.5GHz subsampling PLL with a 150µW frequency-disturbance-correcting loop using a low-power unevenly spaced edge generator," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, pp. 280–281, Feb. 2020.

References [4]

[38] W. El-Halwagy et al., "A 28GHz quadrature fractional-N synthesizer for 5G mobile communication with less than 100fs jitter in 65nm CMOS," in Proc. of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 118-121, June 2016.

[39] Yoon et al., "A –31dBc integrated-phase-noise 29GHz fractional-N frequency synthesizer supporting multiple frequency bands for backward-compatible 5G using a frequency doubler and injection-locked frequency multipliers," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, pp. 366-368, Feb. 2018.

[40] W. Wu et al., "A 14-nm Low-Cost IF Transceiver IC with Low-Jitter LO and Flexible Calibration Architecture for 5G FR2 Mobile Applications," 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, 2023, pp. 277-280.

[41] S. Hu et al., "A 15.6-GHz Quad-Core VCO with Extended Circular Coil Topology for Both Main and Tail Inductors in 8-nm FinFET Process," 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, 2023, pp. 201-204.

[42] P. T. Renukaswamy et al., "4.1 A 16GHz, 41kHzrms Frequency Error, Background-Calibrated, Duty-Cycled FMCW Charge-Pump PLL," 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2023, pp. 74-76.

[44] M. Rossoni et al., "10.1 An 8.75GHz Fractional-N Digital PLL with a Reverse-Concavity Variable-Slope DTC Achieving 57.3fsrms Integrated Jitter and -252.4dB FoM," 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2024, pp. 188-190

[45] D. Xu et al., "10.3 A 7GHz Digital PLL with Cascaded Fractional Divider and Pseudo-Differential DTC Achieving -62.1dBc Fractional Spur and 143.7fs Integrated Jitter," 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2024, pp. 192-194.